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Abstract: The acquisition of both structural MRI (sMRI) and functional MRI (fMRI) data for a given study
is a very common practice. However, these data are typically examined in separate analyses, rather than
in a combined model. We propose a novel methodology to perform independent component analysis
across image modalities, specifically, gray matter images and fMRI activation images as well as a joint
histogram visualization technique. Joint independent component analysis (jICA) is used to decompose a
matrix with a given row consisting of an fMRI activation image resulting from auditory oddball target
stimuli and an sMRI gray matter segmentation image, collected from the same individual. We analyzed
data collected on a group of schizophrenia patients and healthy controls using the jICA approach.
Spatially independent joint-components are estimated and resulting components were further analyzed
only if they showed a significant difference between patients and controls. The main finding was that
group differences in bilateral parietal and frontal as well as posterior temporal regions in gray matter were
associated with bilateral temporal regions activated by the auditory oddball target stimuli. A finding of
less patient gray matter and less hemodynamic activity for target detection in these bilateral anterior
temporal lobe regions was consistent with previous work. An unexpected corollary to this finding was
that, in the regions showing the largest group differences, gray matter concentrations were larger in
patients vs. controls, suggesting that more gray matter may be related to less functional connectivity in the
auditory oddball fMRI task. Hum Brain Mapp 27:47–62, 2006. © 2005 Wiley-Liss, Inc.
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INTRODUCTION

It is common practice to acquire structural magnetic res-
onance imaging (sMRI) brain images on the same individu-
als who also receive functional MRI (fMRI) scans. The sMRI
scans are often used to help coregister brains to a common
space [Toga and Thompson, 2001], or to enable a surface
rendering of the brain for visualization of the fMRI activa-
tions anatomic labeling [Corbetta et al., 1998; Van Essen et
al., 1998]. Recently, there have been some attempts to utilize
structural and functional information jointly (e.g., correla-
tion of structural volumes with functional activation in cer-
tain regions) [Hasnain et al., 2001; Wen et al., 2004]. Voxel-
based morphometric methods also provide a way to directly
compare changes in relative gray matter amounts to changes
in fMRI regions by overlapping the statistical maps created
from each approach. Such an approach is more appropri-
ately called data integration (or conjunction) as opposed to
data fusion (which attempts to analyze both types of infor-
mation in a joint analysis) [Thomsen et al., 2004].

Although interest is now increasing, little work has been
done to examine how changes in brain structure may be
associated with changes in fMRI activation across different
regions. Because the brain is a vastly interconnected organ,
it is reasonable to expect that local changes in brain structure
may result in modulations of brain activity in distant regions
[Mesulam, 1998]. However, computing such interrelation-
ships is difficult in practice due to the need to examine the
relationship between tens of thousands of voxels. Interesting
studies have been performed which examine regressions or
correlations between gray matter (GM) volumes and fMRI
[Siegle et al., 2003] or for relating gray matter homogeneity
with fMRI [Mitchell et al., 1988]. Such studies are important,
and needed; however, one limitation of such approaches is
they do not allow examination of the relationship between
all voxels of both fMRI and GM modalities.

Existing tools for examining joint information include re-
gion-based approaches such as structural equation modeling
or dynamic causal modeling [Friston et al., 2003; McIntosh
and Gonzalez-Lima, 1994]. However, these approaches do
not provide an examination of the full set of brain voxels. A
natural set of tools that avoid this problem include those that
transform data matrices into a smaller set of modes or com-
ponents. Such approaches include those based on singular
value decomposition [Friston et al., 1993, 1996; McIntosh et
al., 1996] as well as, more recently, independent component
analysis (ICA) [McKeown et al., 1998].

Independent component analysis is a statistical and com-
putational technique for revealing hidden factors that un-
derlie sets of random variables, measurements, or signals.
ICA has demonstrated considerable promise for the analysis
of fMRI [Calhoun et al., 2003; McKeown et al., 2003] and
EEG [Makeig et al., 1997] data. Additionally, there have been
a few applications of ICA to perfusion [Tasciyan et al., 2001]
and structural imaging [Alfano et al., 2002; Nakai et al., 2004]
as well.

In this article we introduce the idea of a second-level
feature-based analysis of an fMRI activation map and a gray

matter segmentation map (the features) called “second
level” because preprocessing has been performed to gener-
ate images which represent features of interest. We utilize a
method that enables the decomposition of two features, both
collected on every individual, into a joint set of components
that are maximally spatially independent components. We
recently applied a related approach to perform a joint anal-
ysis of multitask fMRI data from healthy controls and patients
with schizophrenia [Calhoun et al., 2005b]. In this study we
apply the same model (with some modifications to general-
ize the approach) to a dataset of structural and functional MRI
images. All participants were scanned while performing the
auditory oddball fMRI paradigm [Kiehl et al., 2001] and
with a high-resolution T1-weighted scan, used to derive a
relative gray matter image. Both auditory oddball functional
and gray matter structural maps have been found to show
differences in schizophrenia patients. The auditory oddball
evoked response is one of the most robust findings in elec-
trophysiology and the associated fMRI involvement reveals
robust differences in patients with schizophrenia by activat-
ing regions involved in target detection or attentional ori-
enting [Kiehl and Liddle, 2001]. Structural differences are
found using both region-of-interest as well as voxel-based
morphometry [Giuliani et al., 2005; Pearlson and Marsh,
1999].

Schizophrenia is likely associated with a disruption of the
connections present in the healthy brain and particularly
involves heteromodal association cortical regions [An-
dreasen et al., 1999; Lim et al., 1999; Pearlson, 1997; Stevens
et al., 1998]. Many studies have found both structural and
functional differences by examining fMRI and sMRI data
separately. In contrast, a joint analysis would enable one to
study the interactions between fMRI and sMRI data. It is
reasonable to expect that if schizophrenia is associated with
changes in both structural and functional measures, that
activation induced by an fMRI task that activates a large
network of regions might be related to features of gray
matter (in both controls and patients, although to different
degrees). We thus hypothesized that a small number of joint
components would best capture differences between the
patients and controls. We expected this network to show
decreased activation (diminished functional connectivity) in
patients and also to show decreased gray matter concentra-
tion. We also expected to find other joint components which
showed increased fMRI activation in patients and decreased
gray matter concentration (which would suggest structural
changes underlying compensatory functional activation).

THEORY

The joint ICA model assumes that joint spatially indepen-
dent sources are linearly mixed together by a shared mixing
parameter aic. Specifically, we have a set of two equations:

xi,v
(1) � �

c�1

C

aicsc,v
(1) and xi,v

(2) � �
c�1

C

aicsc,v
(2) (1)
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where sc,v
(k) and xi,v

(k) represent the cth independent source and
mixed data from individual i for modality k and voxel v,
respectively. Alternatively, if we, for the moment, assume
we have only one source for each task and write the unmixing
equations for the two modalities s(2) and wx(2) (where w � 1/a),
we can write the likelihood functions p(x(1);w) and p(x(2);w),
considered as functions of w. If we were to run ICA on each
modality separately, we maximize these two likelihood func-
tions in separate ICA analyses. This would result in two sets of
optimal unmixing coefficients, w*1 � arg max

w1
log p(x(1);w1) and

w*2 � arg max
w2

log p(x(2);w2), one for each modality. To inter-
pret both results together, w1

* and w2
* would then have to be

combined somehow as they are computed independently of
one another. If, on the other hand, we utilize a data fusion
approach, we determine a single optimal unmixing coeffi-
cient that maximizes the joint likelihood function,
w* � arg max

w
log p(x(1),x(2);w). It makes intuitive sense not to

compute the parameters independently, since the activation
maps from the two modalities are coming from the same
participant. Thus we have a single w* which fuses the infor-
mation from two sources (or, alternatively, represents a
basis vector common to both). The main advantage of this
approach is that maximizing the joint likelihood function
provides a different (and more reasonable) solution from
one that does not utilize the joint statistics.

We assume the following generative model for the data: xF

� AsF and xG � AsG, where, for the case of two sources and
two subjects, xF � �x1

F x2
F�T is the mixed data for the

fMRI modality for the two subjects, xG � [x1
G x2

G]T is the
mixed data for the gray matter modality for the two subjects,

A � � a11 a12

a21 a22
� is the shared mixing matrix, and sF and sG

are the respective fMRI and gray matter sources (note, in the
nonjoint case, we would instead have xF � AsF and xG �
BsG). We can write this as a single equation by forming a
data vector for each subject as xi � �xi

F xi
G�,, and like-

wise for a source vector si � �si
F si

G�. The resulting mixing
equation for subject i is then xi � Asi. One may use existing
ICA analysis algorithms to perform a joint analysis by form-
ing the overall data matrix X � [X(1),X(2)], stacking one
beside the other (see Fig. 1), and likewise forming S
� [S(1),S(2)] in which each of the original image component
rows Sc

(1) and Sc
(2) are placed adjacent to form a total com-

bined row of length 2V (the number of voxels in two im-
ages). (Additional numbers of data types may be handled
similarly.) The identification of components with shared

loading parameters, and the comparison of the associated
maps, is a key means to identify couplings between brain
image components of different types of data.

SUBJECTS AND METHODS

Simulations

We examine the behavior of our algorithm by creating a
“hybrid” dataset in which a known source is mixed and
added to actual AOD and GM data. These data are then
unmixed using the algorithm described in the previous sec-
tion. Since the superimposed sources have a known pattern,
it is straightforward to extract them from the unmixed data.
Such an approach enables us to evaluate the performance of
the jICA algorithm under a variety of noise conditions, using
data that have a complex structure (since it is partially
comprised of actual data). We can then evaluate the solution,
and different models, by comparing the known unmixed
sources to the ground truth using a measure such as corre-
lation or KL Divergence, D(sPu), between the known
“truth” and the estimated joint sources [Calhoun et al.,
2004a].

A hybrid-data experiment was generated (shown in Fig-
ure 3) in which a known source (a 21 � 21 half-cycle sinu-
soid) was added to different parts of a single-slice of audi-
tory oddball and gray matter data from 30 healthy
individuals after multiplication by a random number drawn
from a uniform distribution (the mixing parameter) with
half of the individuals (the patients) having a mean shifted
down by 0.5 from the other half of the individuals (the
controls). We generated hybrid datasets under a variety of
contrast-to-noise ratios (CNRs) by scaling the known source
relative to the fMRI and GM data. These data were then
entered into a jICA analysis and the component which
showed a significant difference between the groups was
examined.

Participants

Participants were recruited via advertisements, presenta-
tions at local universities, and by word-of-mouth. Fifteen
healthy participants and 15 outpatients with chronic schizo-
phrenia, currently in complete or partial remission, pro-
vided written, informed, IRB-approved consent at Hartford
Hospital and were compensated for their participation. Prior
to inclusion in the study, healthy participants were screened

Figure 1.
Model in which loading parameters are
shared for the hidden feature/source.
The feature matrix is organized by plac-
ing the features (SPM map and GM map)
from the two modalities side by side.
This matrix is then modeled as contain-
ing spatially independent joint source
images which share common mixing
matrix parameters.
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to ensure they were free from DSM-IV Axis I or Axis II
psychopathology (assessed using the SCID [Spitzer et al.,
1996] and also interviewed to determine that there was no
history of psychosis in any first-degree relatives). Patients
met criteria for schizophrenia in the DSM-IV on the basis of
a SCID diagnosis and review of the case file [First et al.,
1995]. All but one of the patients were stabilized on atypical
antipsychotic medications. There were equal numbers of
males (n � 12/12) and females (n � 3/3) in the patient and
control groups and all but two participants in each group
were right-handed. There were no significant between-
group differences in age (patients 37 � 11 years; controls 38
� 11 years). All participants had normal hearing (assessed
by self-report) and were able to perform the task success-
fully during practice prior to the scanning session.

Task

Auditory oddball

The auditory oddball task (AOD) consists of detecting an
infrequent sound within a series of regular and different
sounds. The task consisted of two runs of auditory stimuli
presented to each participant by a computer stimulus pre-
sentation system via insert earphones embedded within
30-dB sound-attenuating MR-compatible headphones. The
standard stimulus was a 500-Hz tone, the target stimulus
was a 1,000-Hz tone, and the novel stimuli consisted of
nonrepeating random digital noises (e.g., tone sweeps, whis-
tles) (Fig. 2). The target and novel stimuli each occurred with
a probability of 0.10; the nontarget stimuli occurred with a
probability of 0.80. The stimulus duration was 200 ms with
an 800, 1,300, or 1,800 ms interstimulus interval. All stimuli
were presented at �80 dB above the standard threshold of
hearing. All participants reported that they could hear the
stimuli and discriminate them from the background scanner
noise. The intervals between stimuli of interest (i.e., target
and novel stimuli) were allocated in a pseudorandom man-
ner to ensure that these stimuli had equal probability of
occurring at 0, 1/3, and 2/3 after the beginning of the image
acquisition period. Because of this the hemodynamic re-
sponse to each type of stimulus of interest was sampled
uniformly at 500-ms intervals. Prior to entry into the scan-
ning room, each participant performed a practice block of 10
trials to ensure an understanding of the instructions. The
participants were instructed to respond as quickly and ac-
curately as possible with their right index finger every time
they heard the target stimulus and not to respond to the

nontarget stimuli or the novel stimuli. An MRI-compatible
fiber-optic response device (Lightwave Medical, Vancouver,
BC) was used to acquire behavioral responses for the task.
The stimulus paradigm, data acquisition techniques, and
previously found stimulus-related activation are described
more fully elsewhere [Kiehl and Liddle, 2001; Kiehl et al.,
2004].

Imaging Parameters

Scans were acquired at the Olin Neuropsychiatry Re-
search Center at the Institute of Living on a Siemens Allegra
3T dedicated head scanner equipped with 40 mT/m gradi-
ents and a standard quadrature head coil. High-resolution,
isotropic T1-weighted images were acquired using a 3-D
MP-RAGE pulse sequence with the following imaging pa-
rameters: TR/TE/TI � 2300/2.74/900 ms, flip angle � 8°,
field of view (FOV) � 176 � 256 mm, Slab thickness � 176
mm, matrix � 176 � 256 � 176, voxel size � 1 � 1 � 1 mm,
number of average � 2, pixel bandwidth � 190 Hz, total
scan time � 10:09 min. The functional scans were acquired
using gradient-echo echo-planar-imaging with the following
parameters (repeat time (TR) � 1.50 s, echo time (TE) � 27
ms, FOV � 24 cm, acquisition matrix � 64 � 64, flip angle
� 70°, voxel size � 3.75 � 3.75 � 4 mm, gap � 1 mm, 29
slices, ascending acquisition). Six “dummy” scans were per-
formed at the beginning to allow for longitudinal equilib-
rium, after which the paradigm was automatically triggered
to start by the scanner.

Data Analysis

sMRI: optimized VBM

A study-specific template was created in order to control
for intensity differences in MR images based on scanner,
template, and population variations using the optimized
VBM approach [Good et al., 2001]. First, a whole brain
template was created from the images of all participants as
follows. Image volumes were first roughly normalized using
a 12-parameter affine model to the 152 average T1 MNI
(Montreal Neurological Institute) template SPM T1 template.
Next, images were segmented into gray, white, and cerebro-
spinal fluid (CSF) compartments and smoothed with an
8-mm smoothing full width at half-maximum (FWHM) ker-
nel. All smoothed segments were then averaged to create T1,
gray, white, and CSF templates. The raw T1 images were
then segmented in their native space and resulting gray

Figure 2.
Auditory oddball paradigm. Auditory
oddball event-related fMRI task.
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matter images were normalized to the customized gray mat-
ter templates. Normalization parameters were recorded and
applied to the raw T1 images. Finally, the warped T1 images
were segmented into individual gray, white, and CSF maps
for each subject using a modified mixture-model clustering
algorithm [Ashburner and Friston, 2000]. The resulting im-
ages are probabilistic segmentations (soft classifications) of
gray matter [Ashburner and Friston, 2000]. The addition of
the first segmentation step minimizes the number of non-
brain voxels misclassified as gray matter (GM) [Good et al.,
2001]. Gray matter images were then smoothed with a
12-mm FWHM Gaussian kernel [Good et al., 2001].

fMRI: preprocessing

fMRI data were preprocessed using the software package
SPM2 (see http://www.fil.ion.ucl.ac.uk/spm). Images were
realigned using INRIalign, a motion correction algorithm
unbiased by local signal changes [Freire and Mangin, 2001;
Freire et al., 2002]. Data were spatially normalized into the
standard MNI space [Friston et al., 1995], spatially smoothed
with a 10 � 10 � 12 mm3 FWHM Gaussian kernel. The data
were slightly subsampled to 3 � 3 � 3 mm, resulting in 53
� 63 � 46 voxels. For display, even slices 8–38 are pre-
sented.

fMRI: GLM analysis

Data for each subject were analyzed by multiple regres-
sion incorporating regressors for the novel, target, and stan-
dard stimuli and their temporal derivatives plus an intercept
term. Regressors were created by modeling the stimuli as
delta functions convolved with the default SPM2 hemody-
namic response function. Only correct responses were mod-
eled. The contrast used in the jICA analysis was the AOD
target stimuli. The amplitude estimates from the first level
analysis were utilized following amplitude bias correction
by the derivative terms [Calhoun et al., 2004b].

jICA analysis

The algorithm for the jICA analysis proceeds with the
following steps.

Feature selection. An SPM contrast image for AOD targets
and a GM segmentation image were computed for each
individual.

Feature normalization. Both GM and AOD images were
sampled to have a voxel size of (2 mm)3 and normalized to
have the same average sum-of-squares (computed across all
subjects and all voxels for each modality). The normalization
is needed because the GM and AOD data have different
ranges. A single normalization factor is used for each data
type; thus, following normalization, the relative scaling
within a given data type is preserved, but the units between
data types are the same (in a least-squares sense). Addition-
ally, because the gray matter images are only positive val-
ued (between 0 and 1), to preserve this positivity in the
analysis (and prevent voxels with near zero gray matter

from making a large contribution) the sign was flipped on
alternate voxels. This heuristic step was performed such that
the mean value of the image would be zero and the large
negative and positive values would both be from voxels
which had high amounts of gray matter concentration
present.

Feature matrix composition. In-brain voxels were analyzed
and the two feature datasets were organized into a matrix as
in Figure 1.

Dimensionality estimation. We used the Minimum Descrip-
tion Length [Calhoun et al., 2001; Rissanen, 1983] criteria to
estimate the dimensionality of the feature matrix.

Dimensionality reduction. PCA was used to reduce the di-
mensionality of the data down to the estimated dimension-
ality (from previous step).

Spatial ica decomposition. The infomax algorithm [Bell and
Sejnowski, 1995] was used to decompose the reduced fea-
ture-matrix to maximally independent component images
and subject specific mixing (loading) parameters.

Component selection. Loading parameters were examined
for a significant difference between patients and controls
using a t-test and only significant components were subse-
quently examined.

Component display. Joint components were reconverted
into 3-D images and the initial sign-flipping process was
reversed. The joint ICA analysis produces a set of different
regions for each type of data (for clarity we call these the
jICA-GM and the jICA-AOD regions), an indication which
part of the combined data contributed significantly to the
source. It is thus possible for the combined maps to have (1)
only the AOD part showing large values, (2) only the GM
part showing large values, (3) both the AOD and GM parts
showing large values.

Because our generative model assumes the same mixing
matrix for both modalities, we also examined whether an
ICA analysis of each modality separately would produce a
similar mixing matrix and, if so, how it would compare with
the jointly estimated mixing matrix. We tested this using
simulations and also on the fMRI and GM data. First, we
generated a simulated set of sources, for two “modalities”
combined with a common, randomly generated mixing ma-
trix. We then performed an ICA analysis of one dataset
alone, and another ICA analysis using both datasets in a
joint analysis. The resulting mixing matrices were then com-
pared to the “true” mixing matrix by sorting the estimated
mixing matrix columns according to their correlation with
the true mixing matrix and computing the average correla-
tion over all components. This was done multiple times to
assess the performance. We also examined performance
when computing ICA of one dataset and using this mixing
matrix to calculate the “source” from the second dataset by
regressing the mixing matrix parameters onto the second
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dataset. To assess performance, the average correlation of
the regression-estimated sources to the “true” sources was
computed. We also examined the results for real data. For
this case, we ran an ICA analysis on the normalized AOD
data alone and a separate ICA analysis on the normalized
GM data alone. The same number of sources estimated from
the entire dataset was estimated for these separate analyses.
In both cases, we selected the component that was most
significantly different for the patient and controls groups
and compared the spatial maps.

In addition to examination of the regions contained within
the joint source images (Component display, above), be-
cause our approach is new we also examined our data in two
other ways. First, within the detected regions (jICA-GM and
jICA-AOD) we examined the values of a standard random
effects SPM (AOD) and VBM (GM) approach for controls vs.
patients. The SPM (AOD) result was produced by entering
the AOD contrast images into a two-sample t-test within the
jICA-GM and jICA-AOD regions. The VBM (GM) approach
was produced by entering the GM images into a two-sample
t-test (also within the jICA-GM and jICA-AOD regions). This
produces four additional results: SPM and VBM values
within jICA-GM and jICA-AOD regions. Finally, we exam-
ined the multimodality data using a histogram analysis.
Voxels that were significant in the jICA analysis for either of
the two data types were used to generate a joint histogram
of the AOD and GM data. These histograms were examined
in individual participants and as group averages. In the
Discussion, we group our results into three subsections re-
porting on (1) the behavior of the AOD data alone within the
jICA-AOD and jICA-GM regions, (2) the behavior of the GM
data alone in these two sets of regions, and (3) the joint
analysis of both datasets.

RESULTS

Simulations

Results for a hybrid dataset under a higher noise situation
(CNR � 0.5), comparable to the size of the signals found in
our data, and a lower noise situation (CNR � 1) are shown
in Figure 3. The component which showed the largest group
difference is displayed with the AOD part of the joint source
on the left, the GM part of the joint source in the middle, and
the correlation of the loading parameter with the ground
truth on the right (“patients” are coded in cyan, “controls” in
yellow). In both cases the correct joint component was found
and the controls show a lower mean than the patients (as
expected). The jICA analysis thus selects out the coupled
source into a separate component and enables us to visualize
where in each dataset the coupling occurs, as well as the
loading parameters.

Behavioral Data

For the auditory oddball task, performance and signifi-
cances for whether controls and patients differed was as
follows: reaction time (controls 431.1 � 102.2 ms; patients

522.3 � 162.6 ms, P � 0.01), accuracy for target detection
(controls 99.6 � 0.01%; patients 97.7 � 0.05%, P � 0.2).

jICA Analysis

Results from the jICA analysis of both modalities are
presented in Figure 4. Ten components were estimated from
the data. The AOD part of the joint source is shown in Figure
4a, the GM part of the joint source is shown in Figure 4b, and
the ICA loading parameters separated by group are shown
in Figure 4c. Only one component was significantly different
at the P � 0.01 level. This component demonstrated different
loadings (P �0.0012) in patients and controls (loading for
controls was higher than that for patients). Different net-
works were identified for the fMRI and sMRI data. For
display, auditory oddball and gray matter sources were
converted to Z-values (by dividing by the standard devia-
tion of the source) and thresholded at �Z� � 3.5. The AOD
data showed primarily regions with greater activation in
healthy controls (including temporal lobe structures and
cerebellum) and the GM data showed only regions with
smaller concentrations (bilateral frontal and parietal, right
temporal) in controls. Talairach coordinates for the AOD
and GM jICA analyses are presented in Table I.

Results from our examination of separate ICA vs. joint
ICA approaches are summarized as follows. For the simu-
lations, we varied the number of samples (voxels) and ran-
domly generated sources and mixing matrices. In all cases,
joint ICA showed slightly improved performance over esti-
mating the mixing matrix from a single dataset. For exam-
ple, for 10 trials, with a sample size of 10,000 and estimating
10 components, each with lognormal distributions, the joint
ICA showed an average correlation of 0.99 � 0.002, whereas
the separate ICA estimation had an average correlation of
0.97 � 0.004 (P � 0.002, two-sample t-test). When examining
the performance of joint ICA vs. separate ICA plus regres-
sion for a different simulation, but with the same parameters
just mentioned, the joint ICA showed an average correlation
of 0.94 � 0.05 and the separate ICA plus regression showed
an average correlation of 0.88 � 0.07 (P � 0.007, two-sample
t-test). For another simulation we used 15 trials, with a
sample size of 10,000, estimating 10 components with Gauss-
ian distributions (we used Gaussian distributions because in
this case the ICA approach is not expected to work as well,
since it is not possible in general to separate Gaussian dis-
tributions with ICA). In this case, the joint ICA showed an
average correlation of 0.84 � 0.05, whereas the separate ICA
analysis had an average correlation of 0.81 � 0.07 (P � 0.05,
two-sample t-test).

For the analysis of AOD and GM data, separate ICA
analyses of each normalized dataset revealed similar, but
not identical components which discriminated the groups.
The resulting maps are shown in Figure 5 and should be
compared with the images in Figure 4. The regions identi-
fied are largely similar, which gives us additional confidence
in the joint ICA approach. The significance values for the
mixing coefficients were slightly higher for the AOD than
the GM maps (P � 0.001 vs. P � 0.01); however, were both
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still significant. Figure 5 shows the resulting maps if the
mixing matrix generated from the separate ICA of AOD
analysis is regressed onto the GM data to generate the
spatial maps. The correlation between the corresponding
mixing matrix columns of the separate ICA analyses and the
joint ICA analysis for the AOD and GM data significant
component were 0.6 and 0.7, respectively.

We can also examine directly the relationship between the
GM and AOD regions. In order to examine the joint task
activity in more detail, a joint histogram was computed as
follows. Voxels surviving the threshold for the AOD part of
the joint source were sorted in descending order using the
component voxel values (the same was done for voxels in
the GM part of the joint source). This procedure resulted in
two sets of voxels coordinates. Histograms were then gen-
erated by pairing these two voxel sets. For example, the first
two points for individual 1 are the voxels values for the

AOD fMRI activation data (at the position that is maximum
in the AOD part of the jICA source) vs. the voxel values for
the GM segmentation data (at the position which is maxi-
mum in the GM part of the jICA source). These pairings
were used to generate single-subject 2-D histograms of gray
matter concentration vs. AOD fMRI signal. The histogram
image for each participant is shown in Figure 6a. In addition,
we computed the within-group average of the histograms
and subtracted the controls group average from the patient
group averaged (shown in Fig. 6b). For the voxels included,
the 2-D histogram can be considered an estimate of the joint
distribution function for the two modalities (e.g., p(faod, fgm)
where faod,gm indicates the fMRI signal amplitude for
the auditory oddball task or the relative gray matter
concentration, respectively). We also computed the
marginal estimated distributions p(faod) � �gmp(faod,fgm) and
p(fgm) � �aodp(faod,fgm) (Fig. 6c,d). The main finding is that

Figure 3.
Simulation and simulation results.
Generation of hybrid data is depicted.
Results from a lower and higher noise
environment is shown in b,c. The
source which revealed the greatest
difference between the two “groups”
is shown for the AOD part of the
joint source (left, b,c) and the GM
part of the joint source (middle, b,c).
Loading parameters vs. the ground
truth values are shown on the far
right of b,c.
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healthy controls have increased fMRI activation on the AOD
task (in regions shown in Fig. 4a), whereas patients with
schizophrenia have increased GM concentration (in regions
shown in Fig. 4b). This is visible on both the group average
histograms in Figure 6b (the patient histogram is located
above and to the left of the control histogram) as well as the

plots in Figure 6c (patient plots are to the left for the AOD
data and to the right for the GM data). The correlation
difference between AOD and GM data at the maximum
voxel for the AOD and GM parts of the joint source was 	

� 0.52 (P � 0.0017), again suggesting a group difference
relationship between AOD and GM in the detected regions.

Figure 4.
Auditory oddball/gray matter jICA analysis. Only one component demonstrated a significant
difference between patients and controls. The joint source map for the auditory oddball (left) and
gray matter (middle) data is presented along with the loading parameters for patients and controls
(far right).

Figure 5.
Separate ICA analyses of GM and AOD data. ICA was used to
estimate components for each modality separately from the nor-
malized data. The AOD (a) and GM (b) results were largely similar
to the results found for the joint estimation. This gives us confi-

dence that the assumptions made for the joint analysis are rea-
sonable ones. c: The resulting spatial map if the mixing matrix from
the separate AOD analysis (a) is regressed onto the GM data to
generate the spatial map.
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TABLE I. Talairach coordinates for the AOD and GM jICA analysis

Area Brodmann

L/R
volume

(cc)
L random effects:

Max T (x,y,z)
R random effects:

Max T (x,y,z)

Auditory oddball
Control greater

Superior temporal gyrus 22:*:38:41:21:42:13:29 9.6/12.5 7.6 (�53,17,�9) 9.5 (59,6,�4)
Inferior frontal gyrus 47:*:45 4.4/1.6 8.6 (�53,17,�6) 5.9 (48,17,�8)
Superior frontal gyrus 6:11:10:8 2.9/2.3 8.4 (0,7,66) 8.1 (6,3,70)
Middle temporal gyrus 21:*:22:20:39 4.8/1.3 5.8 (�53,�29,�4) 6.9 (59,2,�7)
Transverse temporal gyrus 42:41 1.2/1.4 5.0 (�48,�25,10) 6.5 (57,�15,8)
Precentral gyrus 6:43:13:44 0.1/1.6 3.8 (�59,12,3) 6.0 (53,�4,6)
Insula 13:40:29:*:22:47 0.7/2.9 4.3 (�42,13,�2) 5.6 (46,�17,12)
Medial frontal gyrus 6:25 0.3/0.1 5.4 (0,3,62) 4.6 (14,3,66)
Postcentral gyrus 43:40:2 0.0/0.8 3.2 (�51,�25,14) 5.2 (51,�15,14)
Middle frontal gyrus 6:10 0.1/0.6 3.1 (�36,56,�3) 5.1 (40,�1,57)
Inferior parietal lobule 40:39:7 1.6/1.1 4.8 (�48,�62,42) 5.0 (59,�34,22)
Posterior cingulate 29:30 0.3/0.1 4.9 (0,�49,1) 4.5 (0,�52,1)
Cingulate gyrus 32:24 0.9/0.1 4.6 (�4,19,30) 3.1 (2,17,32)
Supramarginal gyrus 40 1.6/0.2 4.5 (�55,�47,34) 3.7 (59,�46,19)
Parahippocampal gyrus 37:Amygdala:34 0.2/0.4 3.6 (�16,3,�15) 4.1 (18,�1,�10)
Subcallosal gyrus 34:13:47 0.3/0.2 3.9 (�16,7,�15) 3.6 (18,5,�14)
Basal ganglia 1.2/1.7 3.6 (�4,0,4) 3.9 (20,�2,�8)
Lingual gyrus 18 0.1/0.0 3.7 (�4,�53,�2) ns
Thalamus 0.4/0.2 3.6 (�2,�5,9) 3.3 (2,�5,9)
Anterior cingulate 24 0.1/0.0 3.5 (�8,23,26) ns
Angular gyrus 39 0.0/0.0 3.4 (�53,�60,34) ns

Control less
Precuneus 19:7:31:39 0.2/3.6 3.2 (�16,�68,48) 5.2 (26,�80,39)
Cuneus 19:7 0.5/0.4 3.8 (�28,�84,26) 4.8 (24,�82,37)
Superior frontal gyrus 6:8 0.9/0.2 4.6 (�24,�8,67) 3.4 (26,12,49)
Superior occipital gyrus 19:39 1.0/0.4 4.5 (�32,�80,26) 3.9 (42,�76,28)
Precentral gyrus 6:4 2.3/0.0 4.5 (�24,�12,67) ns
Middle temporal gyrus 19:39 0.7/0.2 4.3 (�36,�78,26) 3.7 (42,�72,28)
Middle occipital gyrus 19:18 0.5/0.5 4.1 (�32,�80,22) 3.6 (28,�91,16)
Angular gyrus 39 0.2/0.2 3.6 (�36,�74,30) 4.1 (40,�74,30)
Postcentral gyrus 3:5:7 0.8/0.0 4.1 (�42,�20,56) ns
Superior parietal lobule 7 0.0/0.4 ns 4.0 (24,�74,44)
Middle frontal gyrus 6 0.5/0.6 3.8 (�26,�7,61) 3.6 (30,8,49)
Paracentral lobule 4:5:6 0.5/0.1 3.5 (�6,�38,63) 3.0 (2,�32,61)

Gray matter
Control less

Angular gyrus 39 0.6/0.3 8.3 (�34,�58,36) 5.8 (30,�59,34)
Inferior parietal lobule 40:39:7 2.5/1.5 7.8 (�34,�55,36) 5.9 (32,�45,37)
Precuneus 39:19:7:31 1.4/0.9 7.4 (�34,�62,36) 5.6 (28,�60,36)
Middle frontal gyrus 10:8:9:*:6:46:11 4.8/3.1 7.3 (�32,47,14) 5.7 (28,51,7)
Superior parietal lobule 7 0.5/0.4 6.6 (�30,�58,40) 6.2 (30,�54,38)
Superior frontal gyrus 10:6:11:8:9 1.7/2.1 5.9 (�32,51,14) 6.1 (28,52,1)
Precentral gyrus 9:4:6 1.0/0.4 5.9 (�36,21,36) 3.9 (22,�23,53)
Superior temporal gyrus 39:29:13:41:22:38:42 0.1/1.0 5.9 (�34,�55,32) 5.1 (46,�40,13)
Supramarginal gyrus 40 0.6/0.4 5.6 (�36,�45,34) 4.8 (40,�41,37)
Middle temporal gyrus 39:21 0.2/0.2 5.2 (�30,�55,32) 4.6 (50,�40,13)
Medial frontal gyrus 10:9:6 0.0/0.4 ns 4.6 (24,51,10)
Insula 13 0.0/0.4 ns 4.6 (48,�38,15)
Postcentral gyrus 4:3 0.1/0.1 3.1 (�22,�28,55) 4.1 (24,�25,51)
Lingual gyrus 18:17 0.2/0.2 4.0 (�2,�97,�2) 3.7 (16,�96,�9)
Fusiform gyrus 20 0.0/0.1 3.2 (�40,1,�22) 4.0 (40,1,�22)
Cuneus 19:18:17 0.2/0.1 3.9 (0,�82,39) 3.6 (16,�101,�2)
Middle occipital gyrus 19:37 0.1/0.0 3.8 (�44,�72,4) ns
Inferior temporal gyrus 20:19:* 0.1/0.0 3.4 (�46,�74,2) 3.5 (44,�3,�18)

Voxels above the threshold for Figure 4 were converted from MNI to Talairach coordinates and entered into a database to provide anatomic
and functional labels for the left (L) and right (R) hemispheres. Both auditory oddball (top) and gray matter (bottom) voxels are reported.
The volume of activated voxels in each area is provided in cubic centimeters (cc). Within each area, the maximum t value and its coordinate
are provided.
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To further investigate the results, we also examined the
AOD and GM maps with standard voxel-based analyses. In
Figure 7 we mask the SPM difference images for controls vs.
patients with the regions which were revealed by the jICA
analysis for the joint AOD source (not outlined) and the joint

GM source (outlined in white) regions. Figure 7a shows the
T-values from the AOD data and Figure 7b shows the T-
values from the GM data. The AOD fMRI activation values
(Fig. 7a) are positive (greater) for healthy controls (orange/
red) in areas contributing to the AOD joint source and also

Figure 6.
Cross-modality 2-D histograms. Joint 2-D histograms for voxels
identified in the jICA analysis. Individual (a) and group average
difference (b) histograms are provided along with the marginal
histograms for the auditory oddball (SPM contrast image) (c) and

gray matter (segmented) (d) data. In the marginal histograms it is
clear that controls (yellow) tend to have higher auditory oddball
fMRI activation, whereas patients (cyan) tend to have higher gray
matter values.

Figure 7.
Auditory oddball/gray matter group dif-
ference maps. Standard SPM/VBM dif-
ference maps (controls minus patients)
for the auditory oddball (left) and gray
matter (right) data masked by the jICA-
GM regions (outlined in white) and the
jICA-AOD regions. Controls demon-
strated more activation relative to pa-
tients in a variety of regions for the
AOD tasks (consistent with previous
findings) and demonstrated increased
left DLPFC and decreased basal ganglia
activation (also consistent with previ-
ous findings). The GM values are in-
creased in controls for the jICA-AOD
regions and decreased for the jICA-GM
regions.
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largely positive for area contributing to the GM joint source.
In contrast, the GM concentration differences are largely
positive (greater) for healthy controls for areas contributing
to the AOD joint source but negative (smaller) for healthy
controls in regions contributing to the GM joint source.

Because our finding of more gray matter in schizophrenia
was not expected, we also examined the mean images from
each group in the parietal region demonstrating the largest
change. Figure 8a shows the control average and Figure 8b
shows the patient average. The cursor is placed at the loca-
tion of interest, and clearly shows more gray matter in that
portion of the parietal lobe. As an additional check, we
examined the same voxel in a previously published VBM
study with approximately twice the sample size and found
similar larger patient vs. control gray matter concentrations
(although it did not meet the significance criteria set for the
study) [Giuliani et al., 2005]. We discuss this finding further
in the next section.

DISCUSSION

We have demonstrated an approach for analyzing fMRI
data and gray matter (GM) segmentation data in a unified
framework using joint independent component analysis
(jICA). An analysis of data from healthy controls and pa-
tients with schizophrenia revealed several interesting find-
ings. The main finding was that the jICA results identified
group differences in bilateral parietal and frontal as well as
right temporal regions in gray matter associated with bilat-
eral temporal regions activated by the auditory oddball
(AOD) target stimulus. This finding suggests gray matter
regions that may serve as a morphological substrate for
changes in (functional) connectivity as probed by the AOD
target stimuli (although we cannot at this time assess the
causality of the GM or AOD changes). An unexpected cor-
ollary to this finding was that, in the regions showing the
largest group differences, GM concentrations were greater in

patients vs. controls, suggesting that greater GM is related to
less functional connectivity in the AOD fMRI task.

Since the joint ICA analysis produces a set of different
regions for each type of data (for clarity we call these the
jICA-GM and the jICA-AOD regions), we examined the
behavior of the AOD or GM data in both sets of regions.
Because our analysis is not a standard one, it is helpful to
break it into several subsections for discussion. We start by
discussing the behavior of the AOD data alone within the
jICA-AOD and jICA-GM regions, followed by a discussion
of the behavior of the GM data alone in these two sets of
regions. Finally, we propose some possible interpretations of
the joint analysis of both datasets.

Auditory Oddball Target Response

Both the jICA-AOD and the jICA-GM regions revealed,
consistent with previous results, more AOD activation in
controls than in patients. The jICA-AOD regions, largely a
subset of the regions which are strongly activated by the
AOD task in previous studies [Kiehl et al., 2004a], were more
significantly activated in controls vs. patients [Kiehl and
Liddle, 2001; Stevens et al., 2000]. Kiehl and Liddle [2001]
also show excessive target-related activity in posterior tem-
poral lobe regions in schizophrenia, suggesting a possible
anterior posterior temporal lobe disconnection. Such a divi-
sion would also be consistent with work that has found
changes in source localization in temporal lobe regions [Re-
ite et al., 1989]. In general, patients with schizophrenia have
been found to show widespread lesser AOD fMRI activation
[Kiehl and Liddle, 2001; Stevens et al., 1998], also consistent
with our findings.

Gray Matter Concentration

Consistent with hypotheses, the jICA-AOD regions, a sub-
set of those typically found in previous VBM analyses of
controls and patients with schizophrenia [Giuliani et al.,

Figure 8.
Average T1-weighted images for healthy
controls and patients with schizophre-
nia. The crosshair is positioned at the
region showing largest gray matter in-
crease in patients. This view clearly
shows more gray matter in patients.
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2005; Hulshoff Pol et al., 2001], showed more GM in patients
compared to controls. These regions included large portions
of temporal lobe and are consistent with those found in
previous work [McCarley et al., 1993]. Other work has found
associations between P3 ERP data and GM volumes in fron-
tal and parietal regions under different attentional states
[Ford et al., 1994]. Our findings show, for patients relative to
controls, less GM in the anterior temporal lobe and more
GM in the posterior temporal lobe.

Contrary to our hypotheses, the jICA-GM regions demon-
strated more GM concentration in patients. At least two
previous studies have found more GM in patients with
schizophrenia: one in bilateral parietal regions [Suzuki et al.,
2002] and another in the supramarginal gyrus [Buchanan et
al., 2004]. Another study found less bilateral frontal white
matter in first-episode patients [Paillere-Martinot et al.,
2001]. A recent DTI study found lower fractional anisotropy
values in parietotemporal regions (more on the left than the
right) for schizophrenia patients experiencing auditory hal-
lucinations [Hubl et al., 2004]. This is consistent with the
increased GM regions found in the current study (also more
on the left than the right). Other studies have examined GM
concentration changes but have reported primarily less GM
in patients [Job et al., 2002; Kubicki et al., 2002; Wilke et al.,
2001].

The ICA analyses of each modality separately revealed
largely similar findings to the joint analysis. A natural ques-
tion that arises is “Why not just compute the ICA maps
separately?” since to do a joint ICA estimation may impose
some additional assumptions on the data. There are, how-
ever, several reasons to perform a joint estimation. First,
since the results were largely similar, this gives us confi-
dence that our assumption of a common underlying linear
mixture for both data types is a reasonable one. Then, even
though there are additional assumptions imposed by the
joint approach, it uses all available data (data from both
modalities) in the estimation of the same number of param-
eters compared to performing separate ICA steps, hence
potentially improving the estimates. This is also supported
by our simulation results that show an improvement in
performance for the joint ICA approach. However, a more
important advantage of the joint approach is that if ICA is
used on one modality only, it is not readily apparent how to
generate the spatial maps for the more general case of mul-
tiple components and multiple modalities. One possibility
for computing the maps would be to simply assume the
mixing matrix is fixed and to generate spatial maps for the
second modality using the mixing matrix produced by ICA
of the first modality. However, this is not straightforward,
since the data reduction step is different for the GM data, as
is the scaling and ordering of the mixing matrix columns. A
second possibility is that two separate ICA analyses could be
performed as we did above and the mixing coefficients
combined (or fused) somehow. The separately estimated
maps could then simply be used for interpretation. While
this can be done by normalizing and adjusting the sign of
each mixing matrix column (to remove the scaling and sign

ambiguity in ICA) followed by averaging the mixing matrix
columns, this becomes increasingly difficult and ad hoc for
noisy data and if more than one column is to be interpreted.
And, finally, since we hope to extend our approach to more
than two data types, separately estimating and combining
additional modalities can quickly become an intractable
problem. For the above reasons, estimation of a single mix-
ing matrix using data from both modalities is quite attrac-
tive.

The current analysis is fundamentally different from pre-
vious methods since both fMRI and GM data were exam-
ined. In addition, ICA is a multivariate technique as op-
posed to voxel-based morphometric approaches based on
the univariate general linear model [Friston and Ashburner,
2004]. Although we can clearly see the greater GM in pa-
tients in the averaged raw data (Fig. 8) and in separate data
from a previous study [Giuliani et al., 2005], these GM
differences appear to be highly variable between individuals
and may not be well modeled by a univariate VBM ap-
proach. In contrast, the jICA approach has a separate load-
ing parameter for each individual and pools information
across voxels, which may thus better capture individual
variability. In addition, because this is a joint analysis, the
variation of the GM regions is detected in the context of its
linear relationship to the auditory oddball activation (i.e., it
is “fused” to a map containing GM regions). We now discuss
the implications of a joint statistical model.

Joint Auditory Oddball fMRI and
Relative GM Concentration

The main purpose of the joint ICA method utilized here is
to extract the spatial modes of joint, multimodal brain
sources that differ in patients and controls. Such an ap-
proach requires acceptance of the likelihood of GM differ-
ences being related to functional activation. This is not a
difficult premise when considering the same set of voxels
[Thomsen et al., 2004], or even adjacent voxels [Meyer-
Lindenberg et al., 2004], but as the current study shows it
also requires the acceptance of related GM regions and
functional regions which are spatially remote. We suggest
that this, also, is a reasonable conception for the relationship
between structural and functional differences. In the context
of the auditory oddball task, recent hemodynamic imaging
studies have shown that processing of low-probability task-
relevant “target” stimuli (i.e., oddballs) elicit widespread
activity in diverse, spatially distributed cortical and subcor-
tical systems [Kiehl et al., 2005]. The anterior temporal lobe
findings are consistent with the work of both McCarley et al.
[1993] and Ford et al. [1994] using ERP and sMRI, whereas
the anterior/posterior difference in temporal lobe GM
changes support the finding of Kiehl and Liddle [2001] using
fMRI. Our results thus support and significantly extend
previous work.

Schizophrenia is thought to be a disease involving im-
paired brain connectivity [Friston, 1999]. There have been a
number of models proposed, with many studies implicating
regions in temporal lobe, cerebellum, thalamus, basal gan-
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glia, and lateral frontal regions [Andreasen et al., 1998;
Braver et al., 1999; Friston, 1999; McCarley et al., 1991; Wein-
berger, 1987]. Discoordination models [Andreasen et al.,
1998] as well as frontotemporal disconnection models
[Liddle et al., 1992] have been suggested. The current anal-
ysis reveals a structural–functional network which includes
many of the regions mentioned above and the findings are
consistent with both the cognitive dysmetria and frontotem-
poral disconnection models. However, more studies are
needed, with increased numbers of patients and controls, to
confirm this result.

Our proposed method has several advantages. First, our
approach enables the joint analysis of different types of data
in a unified analytic framework. This enables an investigator
to explore the relationship between functional and structural
image data. Second, we utilize a feature-based approach
providing a straightforward way to take advantage of data
modeled at the first level. These features are then queried for
shared dependence, which is not detectable with a simple
voxel-wise subtractive or conjunctive approach. Finally, the
shared mixing coefficient provides a way to examine indi-
vidual or group differences in coupling. For the present, we
have chosen a priori to analyze only the component(s) that
revealed a statistical difference between the two groups. In
future work it would be interesting to develop approaches
for understanding the full ICA decomposition (e.g., to ex-
amine all the components). Additionally, given previous
interest in laterality differences in schizophrenia, it would be
interesting to examine the laterality of these joint sources.

While the modeling assumptions inherent in ICA have
been explored to some degree for fMRI data [McKeown and
Sejnowski, 1998] this has yet to be explored for our jICA
approach. The main assumptions we make are: (1) indepen-
dence of the brain networks for the combined AOD and GM
data; (2) a linear relationship between the subjects and these
networks via the mixing parameters; and (3) the assumption
of a common distributional form for the AOD and GM joint
sources. The first assumption has been used with good
success with brain data previously, and, despite the fact that
brain regions are not functioning independently, due to the
large number of brain regions and the scarcity of the sources,
the independence assumption does appear to have some
value. The linear relationship between subjects restated is
that we assume common networks/sources, present in all
subjects to (linearly) varying degrees. In this study we tested
the hypothesis that patients and controls show differing
network strengths, and found one component that is consis-
tent with this hypothesis. The third assumption of a com-
mon joint-distribution for AOD and GM sources is a sensible
thing to do if one is interested in the examination of joint
information. However, these assumptions are possibly too
limiting in several ways. First, the AOD and GM distribu-
tions may need to be modeled explicitly with different mar-
ginal distributions. To mitigate this concern in this initial
jICA approach, we (1) normalize the AOD and GM data, and
(2) utilize the extended infomax algorithm that adaptively
models the sources as having either supergaussian (e.g., a

distribution with positive kurtosis) or subgaussian distribu-
tion. This algorithm has shown to be quite robust to viola-
tions of the underlying model for a wide variety of data
types [Lee et al., 1999] and enables some flexibility in the
source distributions. This is confirmed in our own data since
upon examination of the distributions of the joint sources we
find that the distribution of the AOD and GM parts of the
same source do show some variation (they have different
means, variances, etc.), which is to be expected for these
data. Finally, the linearity of the subject-wise contribution is
an assumption of convenience, which, although it has
worked very well thus far for ICA of many different data
types, we would like to relax in future work since it is
possible that the joint-sources may also show nonlinear re-
lationships.

Additional approaches can be used to provide informa-
tion about how the AOD and GM data are related. For
example, one could perform an ICA analysis of a single
modality, and then perform a regression of a selected com-
ponent’s mixing parameters upon the other modality. How-
ever, such an approach makes an assumption of direction-
ality in the analysis, which may or may not be appropriate.
In our case, since both AOD and GM data have been shown
to exhibit differences in patients vs. controls, and there has
yet been no direct examination of the correlations between
the two, it is not clear which modality should be used as the
starting point (nor do we believe that, at least with our data,
it is possible to show causality of the observed changes). We
did examine ICA maps of each modality separately, and in
both cases found a component that was similar, but not
identical, to that revealed in our joint ICA analysis. Regres-
sion of the corresponding loading parameters on the other
modality reveals a map that is similar, but not identical, to
that found in our joint ICA analysis. This provides addi-
tional confidence in the changes that we are reporting. How-
ever, it also illustrates the main point we are trying to
convey about the benefits of joint estimation. For this sub-
sequent analysis, we have two sets of loading parameters,
components, and a regression image but do not know how
to combine them. Finally, there are some small, but signifi-
cant, differences in the maps produced on each modality
separately and those produced by a regression approach
(indeed, even if we do a regression on the same data, the
maps are slightly different). This is not surprising due to
modeling differences and also since an approach, based on
ICA of the AOD data, for example, would completely ignore
the two possibilities of (1) GM changes being most signifi-
cant, and (2) AOD and GM both significantly influencing the
linear combinations.

There are also some additional limitations to the joint ICA
approach which should be mentioned. The current frame-
work, for practical reasons, assumes that both voxels and
features are independent and identically distributed. In-
deed, most ICA models used make this assumption and
perform quite well despite the known spatial correlation
between voxels (provided appropriate data reduction is uti-
lized [Hyvarinen et al., 2001]). Nonetheless, it can be poten-
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tially useful to incorporate some additional prior informa-
tion on the voxels (such as spatial correlation) as well as
incorporate more flexible distributions for different features
into the model (e.g., the AOD data and the GM data may be
modeled as having different variances, etc.). Additionally,
although we have demonstrated some evidence supporting
the usefulness of our model, our choice of modeling the
shared dependence between the modalities with the mixing
parameters should be examined in more studies before the
true utility of this assumption will be known. One final point
that should not be ignored is that, given the heterogeneity of
the structural and functional findings in schizophrenia, it is
important to address issues of statistical power for a joint
analysis, which may be different than for an individual
analysis. This is especially important if findings from a joint
analysis are to become clinically relevant. We will attempt to
address these limitations in future work.

CONCLUSIONS

We used a joint-ICA model to examine linearly related
fMRI auditory oddball target activation data and GM
segmentation data. A single component that was signifi-
cantly different between patients with schizophrenia and
healthy controls was examined. GM regions in bilateral
parietal lobe and frontal lobe as well as right temporal
lobe were found to be associated with auditory oddball
activations in bilateral temporal lobe. These findings sug-
gest a possible morphological substrate for auditory odd-
ball connectivity changes in schizophrenia. In general, we
suggest that studying interactions between GM data and
fMRI data provides a useful way to examine structure and
function.
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